
A DOD MANDATED RESOURCE ADAPTER INTERFACE (RAI)
STANDARD IN REACH

 Hugh A. Pritchett
Analysis, Integration & Design Inc. (AIDI)

1600 Sarno Rd Suite #208
Melbourne, Florida 32935

321-253-9919
HPritchett@AIDInc-usa.com

Abstract - A realistic recommendation for
Resource Adapter Interface (RAI), complete
with a path for evolving to more
comprehensive incarnations, is emerging from
an industry supported working group. The RAI
working group was formed in July 2005. The
group of industry experts convened to attain
consensus on what RAI is, to review existing
candidate standards, and possibly to
recommend one or more candidates for
requirement in DoD procurement policy. The
RAI topic has always been a controversial one
that tests the metal of many existing
standards, products and implementations. In
achieving an industry consensus, barriers
arise from vestments and mindsets
surrounding existing products, standards, and
ideas. The RAI working group moved forward
and passed these obstacles by defining a set
of terminology, goals and requirements that
ensured consistent meaning in discussions.
The recommendation that is materializing
promotes a technology and standard that
accomplishes two objectives. First it will
provide a means of providing an RAI that can
be realized with existing technologies.
Secondly it will enable a path to providing
maximized test application portability by
recommending a standard that provides the
evolutionary path to a maximized RAI. To
achieve this, the working group is soliciting
standards committees to embrace and
incorporate RAI requirements. These new
requirements will facilitate the maximized test
application portability when future product
developments embrace the complete
standard. Recently published research
findings that discuss what has hindered
industry from achieving a maximized RAI are

presented. The paper will discuss three
abstractions that apply to RAI and which one
has been selected in the recommendation and
why. Various software technologies applicable
to RAI implementation are also discussed.
The paper also discusses the consensus
definition for RAI, some history, applicability,
and shortfall associated with some of the
major existing products, paradigms and
implementations. Finally, the paper will
provide insights into the future vision for what
RAI can be moving forward.

Understanding What RAI Is

Original RAI goals were developed from a DoD
sponsored forum know as the Critical Interfaces
Working Group (CIWG). The ATS Framework
Working Group has maintained and refined RAI
related information since the CIWG work was
completed. The RAI working group adjusted and
refined the goals maintained by the ATS
Framework working group in their efforts to
identify standards that might satisfy the RAI need.

RAI goals sound simple from the outside:

1. Provide complete test program interoperability
upon capability sufficient systems.

2. Provide flexibility to accommodate new and
potentially unseen advances in test needs.

3. Reduce obsolescence costs related to
Automatic Test Equipment (ATE) systems
replacement and test program rehost.

4. Reduce obsolescence costs driven by test
system asset replacement.

A technology that successfully minimizes the
costs inherent in test program interoperability
scenarios continues to elude the ATS community.
In addressing RAI, various challenges
immediately arise. The RAI working group quickly
realized that terminology regularly used in the
industry could also mean different things in other
contexts and in different architectures. In
particular, it was seen that a set of terminology
needed to be developed and agreed upon before
a definition and defined set of RAI requirements
could be solidified. The agreed upon terminology
and requirements are available from the author or
other RAI working group members. The industry
consensus RAI definition follows:

RAI is the software interface that lies between test
programs and instrument access layers which
ensures ATE independence. The interface is
meant to provide a conduit for test instrument
related information only. Other test platform
assets such as monitors, printers, and others are
not within the scope of RAI.

This definition is a major step toward DoD
acceptance of a standard or set of standards that
can be mandated in acquisition policy. The intent
of the terminology definition is to eliminate the
ambiguity that immediately arises when RAI
discussion is pursued. The Working Group found
that once the terminology was established, the
goals and requirements were readily produced
and agreed to. One factor that contributes to the
difficulty related to agreement on terminology is
the existence of several architectures and
software abstractions that address RAI issues.
Some of these exist on legacy test platforms and
some are emerging in the industry. The
abstractions and their underlying architectures
use terminology and information in different ways
that influence mindsets in alternative directions.
Often the terminology is used with alternate
meaning when the contexts of discussion on
topics within the same architecture change. The
next section discusses test industries’
predominant software architectural paradigms that
have standards or emerging standards with an
interchangeability focus.

System Architectural Paradigms

Abstractions derived from basic underlying test
system concepts are central to understanding the
industry’s predominant architectural paradigms.
Each of the abstractions constrains the test
developer’s interactions in an attempt to achieve a
level of commonality at the test program source

code level. The abstractions also allow the
architecture to work at other user transparent
levels to achieve interchangeability in more subtle
ways.

The Instrument Paradigm

 The instrument paradigm is a conceptual
mindset where instrument drivers or lower level
instrument access layers are communicated to
through higher levels of abstraction software. The
abstraction in this paradigm is one that
generalizes function calls or classes of instrument
functionality to make them common among
disparate instrumentation supplied by differing
vendors. The abstraction represents a more
standard way of communication to instrumentation
than the ad hoc driver interfaces often supplied
with instrumentation. There are several examples
of the instrument paradigm in use today, they
include:

• VXI Plug and Play (VXI PnP),
• Interchangeable Virtual Instruments (IVI)

In the VXI PnP implementation, certain
functionality in the instrument Application
Programming Interfaces (APIs) is commonized so
that calls between different vendor’s
manifestations have a similar look and feel.
However, when rehost or instrument interchange
is required, test program source code must be
altered as the look and feel is only partial. Since
TPS source code must be altered and
reintegrated, it can be seen that VXI PnP does not
approach 100% independence.

In the IVI implementation, categories of
instrumentation are commonized using
standardized APIs. The APIs support functionality
that is general among the specific category of

instrumentation for which they are defined. In
addition, Common Object Model (COM)
technology is employed to provide a level of
indirection that removes the user from having to
know the specific instrument that is being
accessed. Using the IVI standards a user can
achieve some advanced level of test program and
instrument interchangeability. The level of
interchangeability attained is dependent on
several factors including:

• Ability of the instrument vendor to provide
functionality consistently within the
predefined IVI generic instrument class
APIs.

• The ability of the generic instrument class
APIs to achieve stimuli and
measurements demanded by test
requirements for specific Units Under Test
(UUTs).

• The users adherence to the generic
instrument class APIs.

When the IVI architecture is employed,
instruments are identified using logical names
when reference is made in source code. The
logical names are tied to instrument specific
information found in an eXtensible Markup
Language (XML) test platform configuration file
called the IVI configuration store. The logical
name arrangement allows static system
configuration files to be altered to point to any
compliant instruments that can provide the same
generic instrument class API vendor offerings.
This implementation allows users instrument
interchangeability without source code
recompilation. But when actually employed, users
find that IVI does not provide complete
interchangeability. The difficulty arises because
adherence to the generic instrument class APIs is
often difficult or impossible when complex test
requirements need to be satisfied. The IVI
implementation provides a means to directly
access instrument functionality and bypass the
generic instrument class APIs. Interchangeability
is immediately lost when functionality is accessed
in this fashion. There are significant numbers of
instruments and functionalities that are not
covered by IVI generic instrument classes at all.
TPSs that require functionality from non-IVI
supported instruments must access them in an
instrument dependent way. Typical DoD users
have robust requirements that demand the full
functionality of the instrument and have found that
IVI does not achieve the maximized
interchangeability demanded by their domain. IVI

misses the interchangeability target in highly
demanding arenas. Figure 1 below is a depiction
of how IVI misses interchangeability needs. In the
Figure, instruments are depicted as rectangular
collections of functionality represented by various
shapes. Drivers are shown as focal points for
instrument capability. Generic Instrument Classes
(GICs) are shown as groupings of common
capabilities.

Figure 1

Notice that in Figure 1, GIC #1 and GIC #2 are
identical because they expose the same
functionality, where GIC #3 is a separate class
type that exposes a different collection of
functionality. Since GICs #1 and #2 are the same,
instruments #2 and #3 can be utilized
interchangeably. It does not matter if the
instruments are physically the same type or not as
long as the GICs that support them are the same.
From a user perspective, as long as a common
GIC provides the needed functionality,
instruments #2 and #3 are the same. The Figure
also shows that instrument capabilities often fall
outside GIC definition. When these non-GIC
capabilities are needed, the functionality must be
accessed through the instrument driver itself and
not through the GIC where interchangeability can
be obtained. Again referring to Figure 1, if a user
required the functionality represented by the
diamond then only one instrument (instrument #2)
could perform the needed function and instrument
#3 would no longer be interchangeable with
instrument #2. In the light of test program and
instrument interchangeability, the instrument
paradigm breaks down because it does not
completely address significant test platform

resources that must be utilized in complex
scenarios.

The Signal Paradigm

The Signal paradigm embodies a mindset where
tests are conceived as signals that are applied
and detected without the concept of
instrumentation being introduced. Two real world
examples that utilize the signal paradigm are:

• ATLAS
• Institute of Electrical and Electronics

Engineers (IEEE)-1641

Both of these examples are similar in their use
and application. ATLAS provides its own
procedural language for achieving the signal
application, measurement, and sequencing.
IEEE-1641 provides these features in
conventional procedural programming languages.
Both examples embody a similar signal model.
However, the IEEE-1641 signal model provides
more information in terms of instrumentation, path
connection, and inherent test system signal
conditioning than its ATLAS predecessor. The
intent of both ATLAS and IEEE-1641 are to allow
the developer to envision the electrical
manifestations required at UUT pins and allow the
user to procedurally sequence and control those
signals programmatically. The concepts were
developed specifically to achieve test program
and instrument interchangeability. ATLAS has
been embraced for more than 20 years by the
DoD and commercial airlines. ATLAS has
provided some level of test language
standardization which helps when test programs
need to be migrated. But over the years the
ATLAS and ATLAS based languages like IEEE-
1641 have not proven to deliver complete test
program or instrument interchangeability. There

are several reasons why ATLAS isn’t 100%
interchangeable. These include:

• ATLAS provides the ability to call Non-
ATLAS Modules (NAMs)

• Nearly all instances of real world ATLAS
are variants of the standard

Several lesser known, but no less important
factors that impair ATLAS interchangeability are:

• Restricted ability to determine UUT to
signal source connection from ATLAS
source code

• Implied information in key test
requirement areas including:

o Timing
o Location
o Path bound signal conditioning
o Others

Figure 2 below depicts a typical ATLAS TPS
rehost effort

Figure 2

Even with these limitations, ATLAS and the signal
based paradigm is the only existing, viable, and
well supported interchangeability mechanism that
encompasses the gamut of test system capability.
ATLAS also provides the highest level of
interchangeability available in existing tools
because its underlying paradigm does not ignore
any test capability as does the Instrument
paradigm. At this time, ATLAS and signal based
architectures are the only choice when the highest
level of industry standardized interchangeability is
required.

The Signal Requirement Paradigm
(SRP)

Partially based on the Signal Paradigm, the Signal
Requirements Paradigm directly addresses three
impediments present in Signal Paradigm
architectures that cause transportability difficulty.
The SRP suggests that Test Requirements are
actually concerts of signals that occur at defined
locations and with timing relation. The paradigm
was presented to the Automatic Test Markup
Language (ATML) Working Group in a paper titled
the SSAI RAI Standard [1]. The paper was
produced using results from a study on TPS
rehost efforts. The focus was targeted where
rehost practitioners spent their efforts. It was
found that three areas became primary:

1. Reverse engineering path information to
determine provisioning of legacy signals
to and from UUT connection points

2. Reverse engineering and experimenting
with code to adjust implied test needs,
such as timing and conditioning.

3. Reengineering signal definitions to
accommodate additional and also
previously unnecessary information that is
needed in the new platform. These items
are a result of an incomplete signal model
in ATLAS, and also the implementations
of ATLAS that allows signal definition
without requiring complete modifier sets.

The SRP addresses each of these observed
areas where deficiencies found in legacy test
program architectures and paradigms are found.
A fundamental assertion was utilized in the
development of the SRP. The assertion is that test
programs must define what is needed and not
how to accomplish what is needed. Traditional
test programs all define how UUT related test
actions must be accomplished. SRP based test
programs will define what must be provided and

sampled at the UUT. This assertion is applied
based on the observation that many of the
observed deficiencies in legacy rehost efforts
were related to redeveloping the procedure and
that the specification of what is needed will not
require TPS procedure redevelopment. In this
context, when “what” is mentioned, it can be
thought of as data. When “how” is mentioned, it
can be thought of as procedure. The contention
here is that in scenarios that require maximized
test program interoperability, the procedure would
need to be rewritten to accommodate the new
systems where only data needs to be reread.

First, test requirements must specify at which
locations signals must occur and not how to get
the signals to the desired location. The SRP
consistently applies the need to specify what is
needed and not define how to implement.

Second, the relationship between signals must be
expressed explicitly. The definition of what is
needed in time is required, not how to achieve it in
time. Legacy test programs all have implied timing
that impact their ability to interoperate on more
than just the platforms for which they were
developed.

Third, the paradigm defines what is needed at
UUT pins in the form of signals. This is
fundamentally the same as the Signal Paradigm,
except that explicit timing and location definitions
are associated along with one or more signals to
define complete test requirements/ signal
requirements. These requirements never need to
be redeveloped because they are definitions of
what is needed, not how to achieve what is
needed. How to achieve what is needed will be
different on every test system variant and will
always require redevelopment during system
development.

One general observation that has been made is
that ATLAS developers and those that rehost
ATLAS programs are forced to tinker with the
code, sequence, timing, and signal definition in
order to make it work. In ordinary procedural
languages like C++, BASIC, etc., code is more
deterministic. A developer knows what the results
of his development tools are. But with ATLAS,
developers must tweak, observe, adjust, delay,
and iterate until functionality and repeatability are
achieved. This can be observed in both new
development using ATLAS and in program rehost
and migration efforts where ATLAS is involved.

The Signal model found in IEEE-1641 appears to
be the model of choice for the SRP as it is the
most robust model in terms of explicitness. The
IEEE-1641 signal model takes into account
conditioning and other features that are imposed
to create the final UUT signals that are not
available in other models. For instance, consider a
particular signal to be measured from a particular
UUT pin with an instrument whose port has 50
ohm impedance. In ATLAS, that port information
may be completely implied or not implied. There
are many of these undeclared facets that can
adjust signal quality that are not explicit in ATLAS.
In IEEE-1641, a user is allowed to explicitly
declare these types of information. Without these
previously unmentioned facets being
programmatically available and explicit, no signal
could be deterministically and completely made
transportable. It is this deficiency in content and
explicitness that forces ATLAS users into the
tweak, observe, adjust, delay, and iterate
scenario.

Since the SRP always defines what is needed and
not how it should be achieved, it should be clear
that data definition is all that is required in Signal
Requirement Definition. XML is a prolific modern
software data definition technology that is a
perfect match for defining signal requirements as
required in the SRP. Figure 3 below shows a
graphical representation of a schema developed
to represent the SRP signal requirement intent.

Figure 3

In the Figure, signal, location, and timing are
unexpanded for brevity. For location, only a way
to define a UUT location is required. For timing, a
starting time from a fixed reference or another
signal’s timing along with accuracy and a lifetime
are needed. Although any signal model that can
be referenced in a schema can be utilized, it turns
out that in IEEE-1641 a signal definition schema
exists that is applicable to the robust signal model
that IEEE-1641 also defines. Some adjustments
to this XML based schema will bring it completely
in line with the SRP concept while still meeting the
legacy signal requirements paradigm.

The IEEE-1641 committee has agreed to consider
these changes. Interestingly, the two paradigms
attempt to accomplish the same thing with the
same signal model. The signal abstraction uses
procedures to define how things need to be
accomplished at run time. The signal requirement
abstraction uses data to declare what is needed
and leaves the procedural decisions to the test
platform at runtime.

In the SRP, test programs become simple
diagnostic sequencing and control mechanisms
that assert and acquire test requirements as they
are needed and then fulfilled. Another advantage
is that no domain specific language is required in
the SRP. The processor in this scenario is utilized
only for computation and sequence outside test
requirement definition from the test program point
of view. This is to say the procedure used in the
test program is only for sequencing and diagnostic
control issues that do not affect test asset control
or instrument interoperability. The burden of
allocation, connection and invocation, in SRP,
falls on the test system. This means that
procedural test system function is now controlled
exclusively by the test system. In legacy test
stations procedural functionalities are defined and
integrated over and over again in test programs.
In SRP, procedural functions are defined and
integrated only once by a system integrator and
with only a single cost associated. Once defined,
a particular kind of procedure can be utilized
again and again with little or no integration cost.
The burden falls on the test system to extract SRP
test requirement definitions and to provide the
needed procedure to accomplish them using the
test system assets. The test program developer
no longer modifies procedural language that
attempts to define how to achieve test
requirements. The test system knows how to
produce deterministically defined test
requirements. The developer now deterministically

specifies what is needed in the form of signal
requirements. Figure 4 below depicts the vision
for SRP TPS rehost efforts

Figure 4.

Unfortunately, there are yet no

commercially supported tools that utilize the SRP.
However, work is being performed to incorporate
the paradigm in the IEEE-1641 standard so that it
embodies both the signal paradigm and the SRP.
Once incorporated in the standard, the hope is
that industry will realize the value in the
technology and move forward to implement the
SRP in the future.

RAI IMPLEMENTATION CHOICES

As with any system implementation, there are
choices that must be made that affect
performance, accuracy, aesthetics, and other
system characteristics. With RAI, performance
has come to the forefront as a key industry
concern. Tasks that all the paradigms must
accomplish such as instrument allocation, path
selection and allocation, minimizing runtimes, and
others are affected by the decisions. For instance,
instrument allocation in the IVI standard is
achieved against virtual instruments at compile
time, while real instruments are allocated at
runtime by matching virtual references in the
configuration store to paired real instrument
assignments. The IVI standard specifies the way
this allocation is performed. In most ATLAS
implementations, instrument allocation happens at
compile time by comparing signal characteristics
against available and comparable instrument
functionality descriptions. Nothing in the ATLAS
standard requires this implementation. As with
ATLAS, the topic of allocation is not constrained
by the SRP abstraction. There is no requirement

to perform allocation at any particular level of
execution or definition. It is left to the implementer
to design this to his requirements in SRP. Despite
significant industry focus on this issue, there is no
reason SRP cannot be implemented in a manner
that is at least as satisfactory as its predecessor
abstractions.

AN RAI WORKING GROUP
PERSPECTIVE.

Each of the three paradigms that we have found
to address interchangeability fit within the RAI
definition. In all three cases the abstraction that
they embody was developed with
interchangeability as a primary objective. In order
to reduce costs, the DoD would like to embrace
the most robust but still commercially viable RAI
candidate standard possible. Since so many DoD
related test programs exist on today’s test
systems it would seem natural to want something
as closely aligned to ATLAS as possible. This
means that if ATLAS is not recommended, that we
need an easy migration path or at least some
level of compatibility from ATLAS to anything new.
This author’s opinion is that nothing else will
become widely utilized. The ideal situation would
be to have something that supports ATLAS but
provides a pathway to the future for improving the
level of TPS and instrument interchangeability.
The IEEE-1641 committee is currently in a
revision cycle for the standard. Real world
practioners are providing inputs that are being
incorporated to improve the IEEE-1641
documents. The committee has also agreed to
incorporate SRP concepts so that both the Signal
and Signal Requirements paradigms are
supported. This means we will shortly have a
standard that; embraces a pathway to the future;
and at the same time is supported in today’s
environment. The desire is for it to become a
standard that provides a vehicle to maximized
interchangeability using the ATLAS like signal
abstraction for today and moving towards
maximization with the SRP in the future. The RAI
Working Group is supporting that direction and is
supporting the IEEE-1641 committee to that end.

SUMMARY

The RAI Working Group is an industry supported
technical forum that was formed to achieve
consensus on what RAI is and how it can be
standardized for use in DoD acquisition policy.
The RAI working group has produced a

consensus definition for RAI. Various industry-
supported emerging abstractions, focusing on test
program and instrument interchangeability, have
been assessed. The instrument abstraction does
not meet DoD needs when complex test
applications require:

1. Users to step outside the generic
instrument classes and utilize instrument
specific functionality

2. Use of instruments for which generic
instrument classes have not been
developed

The Signal abstraction and Signal Requirements
abstraction are found to be the best
interchangeability candidates. These abstractions
and paradigms comprehensively cover the
complete universe of test requirements. Taken
together the Signal and Signal Requirement
abstractions will both soon be embodied in the
IEEE-1641 standard. Acceptance of this standard
will allow DoD to select existing products that
achieve today’s level of interchangeability while
providing a pathway to the future for maximized
interchangeability. The culminations of these
efforts allow the RAI Working Group to make a
realistic recommendation for RAI, complete with a
path for evolving to more comprehensive
incarnations.

